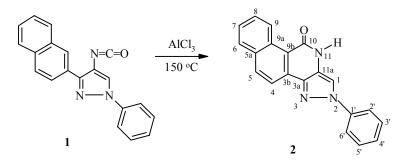
INTRAMOLECULAR CYCLIZATION OF 4-ISOCYANATO-3-(2-NAPHTHYL)-1-PHENYLPYRAZOLE UNDER FRIEDEL-CRAFTS REACTION CONDITIONS


M. V. Vovk¹, N. V. Mel'nichenko¹, V. A. Chornous², and M. K. Bratenko²

4-Isocyanato-3-(2-naphthyl)-1-phenylpyrazole cyclized under the influence of AlCl₃ to give 2H-benzo-[h]pyrazolo[4,3-c]isoquinoline.

Keywords: 2H-benzo[*h*]pyrazolo[4,3-*c*]isoquinoline, 4-isocyanatopyrazole, Friedel–Crafts reaction.

Isocyanates of a number of pyrazoles are a little studied type of heterylheterocumulenes. For example, there is only limited information about 3-isocyanatopyrazoles [1] and 4-isocyanatopyrazoles [2]. Recently [3] we reported the synthesis of the first examples of 3-aryl-4-isocyanato-1-phenylpyrazoles (Ar = Ph, 4-FC₆H₄, 4-ClC₆H₄, 4-BrC₆H₄, 4-EtC₆H₄) and their reactions with nucleophilic reagents. Our attempts to use these compounds for intramolecular cyclization with participation of the N=C=O group and the 3-aryl substituent were unsuccessful, although it had been shown [2] that cyclization of 5-isocyanato-4- ω -phenylalkylpyrazoles was possible under the influence of AlCl₃ to give 7-11 membered lactams, by condensation with the benzene and pyrazole rings.

We have chosen 4-isocyanato-3-(2-naphthyl)-1-phenylpyrazole (1) as a new compound which might undergo cyclization. It was synthesized by the use of the organosilicon variant [4] of the Curtius reaction with 3-(2-naphthyl)-1-phenylpyrazole-4-carbonyl chloride, which, in its turn, was obtained by oxidation of 4-formyl-3-(2-naphthyl)-1-phenylpyrazole.

On investigating the behavior of compound **1** under Friedel–Crafts conditions we observed an example of intramolecular carbamoylation by the isocyanato group at the α -position of the naphthalene ring to give a derivative 2H-benzo[*h*]pyrazolo[4,3-*c*]isoquinoline **2** (54% yield).

¹ Institute of Organic Chemistry, Ukraine National Academy of Sciences, Kiev 02094, Ukraine; e-mail: mvovk@i.com.ua. ² Bukovinskii State Academy of Medicine, Chernovtsy 58000, Ukraine; e-mail: chornous@chv.ukrpack.net. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, 1252-1254, September, 2002. Original article submitted March 20, 2001. Modified version submitted January 24, 2002.

The structure of compound **2** was confirmed by IR, ¹H and ¹³C NMR spectroscopy. In particular there were characteristic bands for C=O (1680) and N–H (3180 cm⁻¹) of a lactam group in the IR spectrum. In the ¹H NMR spectrum the unique proton of the pyrazole ring appeared as two close singlets of approximately equal intensity, apparently caused by the conformational characterics of the pyridone ring.

EXPERIMENTAL

IR spectra were recorded on a UR-20 instrument. ¹H and ¹³C NMR spectra were measured on a Varian VXR-300 instrument (at 300 and 75 MHz respectively) with TMS as internal standard.

4-Formyl-3-(2-naphthyl)-1-phenylpyrazole was prepared by a known method [5]. Yield 78%; mp 140-141°C (dioxane). IR spectrum (KBr), v, cm⁻¹: 1695 (C=O). ¹H NMR spectrum (DMSO-d₆), δ , ppm: 7.24-8.26 (12H, m, H arom); 8.47 (1H, s, 5-H); 10.02 (1H, s, CH=O). Found, %: C 80.85; H 5.07; N 9.57. C₂₀H₁₄N₂O. Calculated, %: C 80.51; H 4.73; N 9.39.

3-(2-Naphthyl)-1-phenylpyrazole-4-carboxylic Acid was obtained by a known method [6]. Yield 69%; mp 243-244°C. IR spectrum (KBr), v, cm⁻¹: 1705 (C=O), 2600-2950 (COOH). ¹H NMR spectrum (acetone-d₆), δ , ppm: 7.23-8.31 (12H, m, H arom); 8.64 (1H, s, 5-H); 11.03 (1H, br. s, COOH). Found, %: C 76.11; H 4.52; N 9.23. C₂₀H₁₄N₂O₂. Calculated, %: C 76.42; H 4.49; N 8.91.

4-Isocyanato-3-(2-naphthyl)-1-phenylpyrazole (1). Thionyl chloride (0.72 ml, 10 mmol) and DMF (3-4 drops) were added to a suspension of 3-(2-naphthyl)-1-phenylpyrazole-4-carboxylic acid (1.57 g, 5 mmol) in anhydrous toluene (30 ml) and the mixture was boiled for 2 h. The toluene and excess thionyl chloride were evaporated from the mixture, toluene (15 ml) was added to the residue, then trimethylsilyl azide (0.69 g, 60 mmol) in toluene (5 ml) was added to the stirred and boiling mixture over 0.5 h. The mixture was heated for 4 h until evolution of nitrogen ceased. The solvent was evaporated and the residue was purified by crystallization from 3:1 benzene–hexane. Yield 76%; mp 132-134°C. IR spectrum (CH₂Cl₂), v, cm⁻¹: 2270 (N=C=O). ¹H NMR spectrum (C₆D₆), δ , ppm: 6.85 (1H, s, 5-H); 7.04-8.36 (12H, m, H arom). Found, %: C 77.27; H 4.59; N 13.65. C₂₀H₁₃N₃O. Calculated, %: C 77.16; H 4.21; N 13.50.

2-Phenyl-2H-benzo[*h*]**pyrazolo**[4,3-*c*]**isoquinolin-10**(11H)-one (2). A solution of isocyanate 1 (0.5 g, 1.6 mmol) in *o*-dichlorobenzene (2 ml) was added to a suspension of AlCl₃ (0.45 g, 3.5 mmol) in *o*-dichlorobenzene (5 ml) heated to 80°C, the temperature was raised to 115°C and kept there for 1 h, then the temperature was rapidly raised to 150°C and heating was stopped. The solvent was evaporated from the cooled mixture, water (50 ml) was added to the residue, and the precipitate formed was filtered off and crystallized from dioxane. Yield 54%; mp 300°C. IR spectrum (KBr), v, cm⁻¹: 1680 (C=O), 3180 (N–H). ¹H NMR spectrum (DMSO-d₆), δ , ppm: 7.39-8.42 (11H, m, H arom); 10.18, 10.21 (1H, two s, 1-H); 11.71 (1H, s, NH). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 109.13 (C_(11a)), 117.03 (C₍₂) and C₍₆)), 117.29 (C₍₄)), 117.62 (C_(9b)), 122.58 (C_(3b)), 124.39 (C₍₅)), 124.82 (C₍₉₎), 125.03 (C₍₄)), 126.24 (C₍₁₎), 126.87 (C₍₇₎), 127.59 (C_(3') and C_(5')), 129.17 (C_(9a)), 130.39 (C₍₆₎), 131.22 (C₍₈₎), 132.36 (C_(5a)), 134.66 (C_(1')), 138.06 (C_(3a)), 160.70 (C₍₁₀₎). Found, %: C 77.13; H 3.86; N 13.11. C₂₀H₁₃N₃O. Calculated, %: C 77.16; H 4.21; N 13.50.

REFERENCES

- 1. B. Graham, H. D. Porter, and A. Weissberg, J. Am. Chem. Soc., 71, 983 (1949).
- 2. D. E. Butler and S. M. Alexander, J. Heterocycl. Chem., 19, 1173 (1982).
- 3. M. V. Vovk, N. V. Mel'nichenko, V. A. Chornous, and M. K. Bratenko, *Zh. Org. Khim.*, **37**, 1828 (2001).
- 4. V. F. Mironov and V. P. Kozyukov, Zh. Obshch. Khim., 54, 1217 (1984).
- 5. M. K. Bratenko, I. N. Chernyuk, and M. V. Vovk, Zh. Org. Khim., 33, 1369 (1997).
- 6. M. K. Bratenko, V. A. Chornous, and M. V. Vovk, *Zh. Org. Khim.*, **37**, 587 (2001).